La regressione logistica per la previsione del rischio di default degli enti locali italiani. Profili teorici ed evidenze empiriche

Anteprima

Il presente lavoro intende testare l’affidabilità dei modelli econometrici per la previsione del rischio di default degli enti locali. L’obiettivo della ricerca è stato perseguito mediante un approccio metodologico di tipo deduttivo-induttivo. La fase deduttiva ha avuto ad oggetto l’analisi critica della letteratura, nazionale ed internazionale, in materia di crisi finanziaria dell’ente locale e modelli econometrici per la previsione delle crisi aziendali. Nella fase induttiva è stato sviluppato un modello logistico condizionato per studi caso-controllo in cui le variabili esplicative sono costituite da indicatori finanziari costruiti sui dati di bilancio. Il modello è stato testato su un campione casuale stratificato composto da 168 comuni italiani. I risultati dimostrano la validità del Cash Solvency (che misura la capacità di riscossione delle entrate correnti rispetto alle spese correnti), dell’indicatore di Incidenza delle entrate proprie sulle entrate totali e dell’indicatore di Indebitamento (che misura il peso dei debiti sulle entrate totali) come predittori del rischio di default.

_____________________________________
This paper aims to test the reliability of econometric models for forecasting the default risk of local authorities. The research objective was pursued through methodological approach deductive and inductive. Phase deductive has had to subject the critical analysis of the literature, national, international, in the area of local government financial crisis, and econometric models for forecasting corporate crises. In the induction phase, it has been developed a conditional logistic model for case-control studies in which the explanatory variables consist of financial indicators built on budgetary data. The model was tested on a random stratified sample of 168 Italian municipalities. The results demonstrate the validity of the Solvency Cash (which measures the ability of collection of current revenues over current expenditures), the indicator of the impact of own revenues on total revenues and the indicator of indebtedness (which measures the burden of debts on Total revenue) as the default risk predictors.

Key words: Local authorities, Default, Indicators, Logistic regression

Bibliografia
  1. Altman E.I. (1968), “Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy”, The Journal of Finance, 23, 4, pp. 589-609.
  2. Altman E.I. (1984), “A further empirical investigation of the bankruptcy cost question”, The Journal of Finance, 39, pp. 1067-1090.
  3. Altman E.I., Hotchkiss E. (2006), Corporate Financial Distress and Bankruptcy: Predict and Avoid Bankruptcy, Analyze and Invest in Distressed Debt, New York: Wiley Finance Series, Hoboken.
  4. Altman E.I., Narayanan P. (1997), “An international survey of business failure classification models”, Financial Markets and Institutions, 6(2), pp. 1-57.
  5. Altman E.I., Haldeman R., Narayannan P. (1977), “Zeta Analisys. A new model to identify bankruptcy risk of corporations”, Journal of Banking and Finance, 1, pp. 29-54.
  6. Altman E.I., Margaine M., Schlosser M., Vernimmen P. (1974), “Statistical credit analysis in the textile industry. A French experience”, Journal of Financial and Quantitative Analysis, 9, pp. 195-211.
  7. Atiya A.F. (2001), “Bankruptcy prediction for credit risk using neural networks: a survey and new result”, IEEE Transactions on neural networks, 12(4), pp. 929-935.
  8. Balcaen S., Ooghe H. (2004), Alternative methodologies in studies on business failure: do they produce better results than the classical statistical methods?, Working Paper n. 249, Faculteit Economie en Bedrijfskunde, Universiteit Gent, pp. 1-33.
  9. Barontini R. (2000), La valutazione del rischio di credito. I modelli di previsione delle insolvenze, Bologna: Il Mulino.
  10. Beave r H.W. (1966), “Financial Ratios As Predictors of Failure”, Journal of Accounting Research, 4, pp. 71-111.
  11. Beave r H.W., Kennelly J.W., VossSource W.M. (1968), “Predictive Ability as a Criterion for the Evaluation of Accounting Data”, The Accounting Review, 43(4), pp. 675-683.
  12. Borgonovi E. (2009), “Il concetto di costo standard: valutazione sui possibili effetti derivanti dalla sua applicazione”, in: Anselmi L. (a cura di), La misurazione delle performance nelle pubbliche amministrazioni, Roma: CNEL.
  13. Brown K.W. (1993), “The 10-Point Test of Financial Condition; Toward an Easy-to-Use Assessment Tool for Small Cities”, Government Finance Review, 9(6), pp. 21-27.
  14. Brown K.W. (1996), “Trends in Key Ratios Using the GFOA Financial Indicators
    Databases 1989-1993”, Government Finance Review, 12(6), pp. 30-34.
  15. Cabaleiro R., Buch E., Vaamonde A. (2012), “Developing a Method to Assessing the Municipal Financial Health”, The American Review of Public Administration, 43(6), pp. 729-751.
  16. Cannata F. (2001), “Rating esterni e dati di bilancio: un’analisi statistica”, Studi e Note di Economia, 3, pp. 37-65.
  17. Capa lbo E., Grossi G. (2014), “Assessing the influence of socioeconomic drivers on Italian municipal financial destabilization”, Public Money and Management, 34(2), pp. 107-114.
  18. Carmeli A. (2003), “Introduction: Fiscal and Financial Crises of Local Governments”, International Journal Of Public Administration, 26(13), pp. 1423-1430.
  19. Cohen S., Doumpos M., Neofytou E., Zopounidis C. (2012), “Assessing financial distress where bankruptcy is not an option: An alternative approach for local municipalities”, European Journal of Operational Research, 218, pp. 270-279.
  20. Cope land R.H., Ingram R.W. (1982), “The association between municipal accounting information and bond rating changes”, Journal of Accounting Research, 20, pp. 275-289.
  21. Corte dei Conti (2012), Relazione Sulla Gestione Finanziaria Degli Enti Locali Esercizi 2011-2012, pp. 498-530.
  22. Corte dei Conti (2014), Audizione sul DDL Disposizioni urgenti in materia di finanza locale Camera dei Deputati 21 marzo 2014, disponibile su http://www.corteconti.it/export/sites/portalecdc/_documenti/controllo/sez_autonomie/2014/audizione_21_marzo_2014.pdf.
  23. Cox D.R., Hinkley D.V. (1974), Theoretical Statistics, London: Chapman and Hall.
  24. D’Alessio G. (2006), La disciplina della dirigenza pubblica: profili critici ed ipotesi di revisione del quadro normativo, in LPA, pp. 1-25.
  25. Demirgüc-Kunt A. (1989), “Deposit institution failures: A review of the empirical literature”, Economic Review, 25(4), pp. 2-18.
  26. Farneti G., Mazzara L., Sav ioli G. (1996), Il sistema degli indicatori negli enti locali, Torino: Giappichelli Editore.
  27. Farneti G., Padova ni E. (2003), Il check-up dell’ente locale, Milano: Il Sole 24 Ore.
  28. Fernandez A.I. (1988), “A Spanish model for credit risk classification”, Studies in Banking and Finance, 7, pp. 115-125.
  29. García-Sánchez I.M., Cuadrado-Ballesteros B., Frías-Aceituno J.V., Mordan V. (2012), “A new predictor of local financial distress”, International Journal of Public Administration, 35(11), pp. 739-748.
  30. García-Sánchez I.M., Morda n N., Prad o-Lorenzo J.M. (2012), “Effect of the political system on local financial condition: Empirical evidencefor Spain’s largest municipalities”, Public Budgeting and Finance, 32, pp. 40-68.
  31. Groves S., Godsey W., Shulman M. (1981), “Financial Indicators for local government”, Public Budgeting and Finance, 1(2), pp. 5-19.