La Business Intelligence e la Business Analytics nell’era dei Big Data: una analisi della letteratura

Anteprima

Business Intelligence and Business Analytics in the Big Data Era. A Literature Review

This research project is a preliminary study based on a literature review aiming at understanding the relevance of Business Intelligence (BI) and Business Analytics (BA) in the context of Big Data (BD). We focus our attention on BI and BA as instruments to support the decision-making processes. The aims of this preliminary analysis is twofold. To draw a picture of the progress of studies regarding BI and BA in the era of BD, identifying the research centres that dealt with this topic, the major journals for the research purpose and the main research lines. To understand the relationship between these three key concept analysing publication and conference proceedings in different disciplinary fields.

We consider the Web of Science database, and we select 25 documents. According to this analysis, we identify three main streams of research concerning decision process challenges, the fields of employment of BI and BA technologies, and implementation methodologies. We also highlight the importance to develop research on the differences and the interconnections between BI and BA, the field of adoption of predictive and prescriptive models.

Keywords: Literature Analysis, Literature Review, Business Intelligence, Business Analytics, Big Data, Business Data Analytics.

Tabella 5_ Collocazione-Prodotti-Ricerca

Tabella 7_Confronto-Concetti

Bibliografia
  1. Abai, Nur Hani Zulkifli; Yahaya, Jamaiah Hj; Deraman, Aziz (2015) “Incorporating Business Intelligence and Analytics into Performance Management for the Public Sector Issues and Challenges”, 5th International Conference on Electrical Engineering and Informatics.
  2. Abbasi A., Sarker S., Chiang R.H. (2016), Big Data Research in Information Systems: Toward an Inclusive Research Agenda, Journal of the Association for Information Systems, 17, 2.
  3. Appelbaum, D, Kogan, A, Vasarhelyi, M, Yan, ZK (2017) Impact of business analytics and enterprise systems on managerial Accounting. International Journal of Accounting Information Systems, vol. 25 pp 29-44.
  4. Appelbaum, D, Kogan, A, Vasarhelyi, M, Yan, ZK (2017), Impact of business analytics and enterprise systems on managerial Accounting, International Journal of Accounting Information Systems, n. 25, pp. 29-44.
  5. Arnott, David, Pervan, Graham (2014), A critical analysis of decision support systems research revisited: the rise of design science Journal of Information Technology, 29, 4, pp 269-293.
  6. Aureli S., Del Baldo M. (2016), Performance Appraisal of Business Networks. How SMEs Define and Monitor Network Objectives, Management Control, 1, pp. 35-58. Doi: 10.3280/MACO2016-001003.
  7. Baig, Abdul Rauf; Jabeen, Hajira (2016), Big data analytics for behavior monitoring of students, Conference: 4th Symposium on Data Mining Applications (SDMA), 82, pp 43-48.
  8. Barbosa. MW, Vicente.AD, Ladeira. MB, de Oliveira MPV (2018), Managing supply chain resources with Big Data Analytics: a systematic review, International Journal of Logistics-Research and Applications, 21, 1. pp 177-200.
  9. Bayrak, Tuncay (2015) “A Review of Business Analytics: a Business Enabler or Another Passing Fad”, World Conference On Technology, Innovation and Entrepreneurship, pp 230-239. DOI: 10.1016/j.sbspro.2015.06.354.
  10. Bertini U. (1995), Scritti di politica aziendale, Torino, Giappichelli.
  11. Capurro et al (2018) “Mondo reale-tradizionale e “mondo digitale” strategie aziendali e web intelligence: il futuro del controllo e della gestione delle informazioni, Management Control, n. 2, Special Issue.
  12. Cardoni A. (2018), Le sfide evolutive del Mnagement Control tra realzioni Stategiche, innovazione e discontinuità: a knowledge transfer matter?, Management Control, 1, pp. 5-15. Doi: 10.3280/MACO2018-001001.
  13. Chen H., Chiang R.H., Storey V.C., (2012), Business intelligence and analytics: From big data to big impact, Management Information Systems Quarterly, 36, 4, pp.1165-1188.
  14. Chiucchi M.S., Gatti M. (2015), Editoriale. L’evoluzione degli studi di management control: un percorso nel segno della varietà, Management Control, 1, pp. 5-8. Doi: 10.3280/MACO2015-001001.
  15. Chongwatpol J. (2016) “Managing big data in coal-fired power plants: a business intelligence framework” Industrial Management & Data Systems, 166, 8, pp. 1779-1799
  16. Davenport, T.H. (2014), Big Data @ Work: Dispelling the Myths, Uncovering the Opportunities. Harvard Business Review Press, pp. IX, 228.
  17. Dhar, Subhankar; Mazumdar, Sourav (2014) “Challenges and Best Practices for Enterprise Adoption of Big Data Technologies” Ieee International Technology Management Conference (ITMC).
  18. Flath C.M., Stein. N, (2018) “Towards a data science toolbox for industrial analytics applications” Computers in Industry, 94, pp.16-22.
  19. Fredriksson C. (2015), “Knowledge management with Big Data Creating new possibilities for organizations”. In The XXIVth Nordic Local Government Research Conference (NORKOM).
  20. Frisk J.E., Bannister F. (2017), “Improving the use of analytics and big data by changing the decision-making culture a design approach”. Management Decision, 55, 10, pp. 2074-2088.
  21. Galeotti M., Garzella S., Fiorentino R., Della Corte G. (2016), The Strategic Intelligence implications for Information Systems, Management Control, 1, pp. 105-123.
  22. Gandomi A., Haider (2015). Beyond the hype: BD concepts, methods, and analytics. IJIM, 35(2), pp.137-144.
  23. Gartner (2014), IT Glossary, https://www.gartner.com/it-glossary
  24. Hahn, G. J., Packowski J. (2015) “A perspective on applications of in-memory analytics in supply chain management”, Decision Support Systems, 76, pp.45-52.
  25. Hawking P., Sellitto C. (2010), Business Intelligence (BI) Critical Success Factors, 21 Australian Conference on Information Systems, Brisbane.
  26. La Valle S., Lesser E., Shockley R., Hopkins M.S., Kruschwitz N. (2011), Big data, analytics and the path from insights to value, MIT Sloan Management Review, 52, 2, p. 21
  27. Labonte-LeMoyne E., Leger P.M., Robert J., Babin G., Charland P., Michon J.F. (2017), “Business Intelligence Serious Game Participatory Development: Lessons from ERPsim for Big Data”. Business Process Management Journal, 23, 3, pp. 493-505.
  28. Latinovic T. S., Preradovic D. M., Barz C. R. (2015), “Big Data in Industry”, International Conference on Innovative Ideas in Science, Vol. 144.
  29. Mancini D. (2011), L’azienda-rete e le decisioni di partnership: il ruolo del Sistema informativi relazionale, Management Control, 1, pp. 65-97.  Doi: 10.3280/MACO2011-001004
  30. Mancini D. (2016), Accounting Information Systems in an Open Society. Emerging Trends and Issues, Management Control, 1, pp. 5-16. Doi: 10.3280/MACO2016-001001.
  31. Manyika J., Chui M., Brown B., Bughin J., Dobbls R., Roxburgh C., Byers A.H., (2011), Big data: The next frontier for innovation, competition, and productivity, McKinsey Global Institute.
  32. Marchi L. (1993), I sistemi informativi aziendali, Milano, Giuffrè
  33. Marchi L., Mancini D. (2009), Gestione informatica dei dati aziendali, Milano, Franco Angeli.
  34. Marchi L. (2018), Quale metodologia di ricerca sulle tematiche di management Control?, Management Control, 2, pp. 5-10. Doi: 10.3280/MACO2018-002001.
  35. Marjanovic, Olivera (2015) “From Analytics-as-a-Service to Analytics-as-a-Consumer-Service: Exploring a New Direction in Business Intelligence and Analytics Research”, The Hawaii International Conference on System Sciences (HICSS), pp. 4742-4751.
  36. Negash S. (2004), Business Intelligence, Communications of the Association for Information Systems, n.13, pagg.177-195.
  37. Olson D.L. (2003), Managerial Issues of enterprise resoure planning systems, Mc Graw Hill.
  38. Onida P. (1968), Economia d’azienda, Utet, Torino.
  39. Pape T. (2016), Prioritising Data Items for Business Analytics: Framework and Application to Human Resources, European Journal of Operational Research, 252, 2, pp.687-698.
  40. Rothberg H. N.; Erickson, G. S. (2017), Big data systems: knowledge transfer or intelligence insights?, Journal of Knowledge Management, 21, 1, pp 92-112.
  41. Schuetz C.G., Schausberger S., Schrefl.M. (2018), Building an active semantic data warehouse for precision dairy farming, Journal of Organizational Computing and Electronic Commerce, 28, 2, 122-141, DOI: 10.1080/10919392.2018.1444344.
  42. Shao B.B., Lin W.T (2016), Assessing output performance of international technology service industries: productivity, innovation and catch up. International Journal of Production Economics, 172, 43-53.
  43. Shin J. C., Lee S. J., & Kim Y. (2012), Knowledge-based innovation and collaboration: a triple-helix approach in Saudi Arabia, Scientometrics, 90, 1, 311–326. Doi:10.1007/s11192-011-0518-3.
  44. Sun Z., Pambel F., Wang F. (2015). Incorporating Big Data Analytics into Enterprise Information Systems. Information and Communication Technology, 9357, pp.300-309.
  45. Sun Z., Strang K., Firmin S. (2017), Business Analytics-Based Enterprise Information Systems. Journal of Computer Information Systems, 57, 2, pp. 169-178.
  46. Sun Z., Strang K.D.; Yearwood J. (2014) “Analytics Service Oriented Architecture for Enterprise Information Systems”16th International Conference On Information Integration And Web-Based Applications & Services (IIWAS 2014), pp.508-516.
  47. Sun Z., Zou H., Strang K. (2015), Big Data Analytics as a Service for Business Intelligence, Open and Big Data Management and Innovation, 9373, pp. 200-211.
  48. Sun ZH, Sun. L.Z., Strang K. (2018), Big Data Analytics Services for Enhancing Business Intelligence, Journal of Computer Information Systems 58, 2, pp.162-169.
  49. Vajirakachorn, T., Chongwatpol, J. (2017) Application of business intelligence in the tourism industry: A case study of a local food festival in Thailand. Tourism Management Perspectives, 23, pp.75-86.